Medtronic

Engineering the extraordinary

Guide Clinique

Monitorage de la conscience BIS 3.5

Par Annie Bélanger, inh. Gestionnaire de territoire

annie.belanger@medtronic.com 514-942-0466

Monitorage BIS™ PERTINENCE CLINIQUE

Réduit le risque de délirium post-op

Réduit la quantité d'anesthétiques utilisés lors de la procédure

Éveil/orientation du patient plus rapide

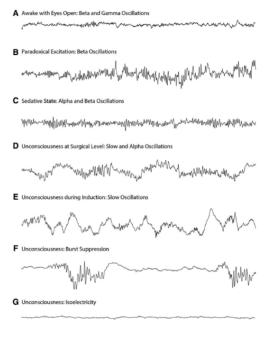
Séjour en salle de réveil plus court

Améliore la satisfaction des patients

Réduit le risque d'incidence de mémorisation per-op

Diminue les coûts totaux reliés à la procédure

Réduit l'incidence de nausées et de vomissements post-op


ÉLECTROENCÉPHALOGRAMME (EEG)

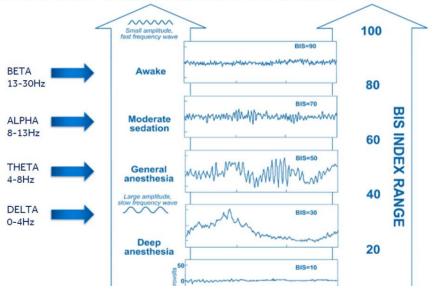
COURBES CARACTÉRISTIQUES

- L'EEG s'exprime par des courbes sinusoidales d'amplitudes (uV) et de fréquences (Hertz) spécifiques pour chaque état d'activité cérébrale.
- L'EEG d'un patient est influencé par sa physiologie et son métabolisme, ainsi que par la nature et le dosage des agents pharmacologiques (volatile ou IV) qui lui sont administrés.
- Le signal EEG est toujours 'contaminé' par des artéfacts qui peuvent être générés par:
 - De l'activité musculaire autour des électrodes (EMG)
 - De l'activité électrique liée au rythme cardiaque (ECG)
 - Des interférences électriques environnementales

Name	Frequency Range (Hertz, Cycles per Second)
Slow	<1
Delta	1-4
Theta	5–8
Alpha	9-12
Beta	13-25
Gamma	26–80

Adapted from Purdon et al., Anesthesiology 2015.

Moniteur BIS 3.5


- oDensité spectrale
- oÉlectroencéphalogramme
- oBurst/minute
- oTemps de suppression
- oRatio de suppression
- oFréquence médiane (MF ou SEF50)
- oSpectral Edge Frequency (SEF95)
- oValeur BIS
- $\circ \mathsf{EMG}$

MONITEUR BIS™ PLATEFORME 3.50 ET CAPTEUR QUATRO (UNILATERAL)

AFFICHAGE ET PARAMÈTRES DISPONIBLES

INCIDENCE DE L'ANESTHÉSIE SUR L'EEG

APPLICATION DES CAPTEURS

TECHNOLOGIE ZIPPREP™

*** Peut être installé en cours de chirurgie au besoin***

Step 1 Step 2 Step 3 Step 4 Nettoyez la peau à Positionner le capteur Appuvez sur les bords du Appuvez doucement mais l'alcool et séchez en diagonale sur capteur pour qu'il adhère fermement au centre de le front du patient. à la peau du patient. chaque électrode pendant 5 secondes.

Afin de minimiser les risques de torsion du capteur au niveau de la connexion, utiliser une bande adhésive ou détendre le fil.

Exemple d'un cas complet

Activités cérébrales dans l'ensemble du spectre 0-30Hz jusqu'à 8h25

Induction: Inhibitation des hautes fréquences à l'induction. Chute rapide de BIS et apparition du bleu dans le 20-30Hz

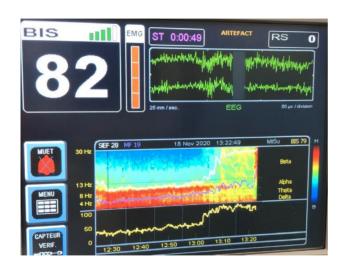
Maintien: MF (median frequency) et SEF (Spectral edge frequency) stable

Émergence: Apparition d'activités dans les hautes fréquences 20-30 Hz à 9h15

Exemple d'une induction

Activités cérébrales dans l'ensemble du spectre au départ, puis à 12h55, inhibition des hautes fréquences (apparition du bleu dans le 15-30 hz) et dominance dans les basses fréquences (apparition du rouge dans le 0-8 hz)

Valeur BIS maintenue entre 40 et 60


Exemple de **maintenance**

Stabilité des fréquences dominantes (0-10 hz)

Inhibition des hautes fréquences (bleu dans le 15-30 hz)

MF (median frequency) stable à 4hz

SEF (spectral edge frequency) stable à 13hz

Exemple d'une **émergence**

Apparition d'activités dans tout le spectre (0-30 Hz) à 13h.

Activation des hautes fréquences (disparition du bleu) et perte de la dominance des basses fréquences (disparition du rouge).

Augmentation du SEF (spectral edge frequency) et du MF (median frequency)

Exemple d'un bolus de **propofol** (30mg)

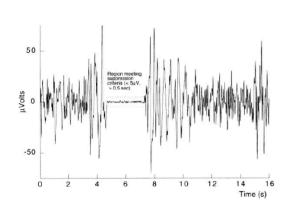
Inhibition de toutes activités cérébrales suite au bolus.

Perte de dominance dans l'ensemble du spectre (bleu dans le 0-30Hz à 20h55)

Reprise de l'activités cérébrales progressives entre 20h55 et 21h05.

ST (suppression time) à 7min24sec, dû à l'accumulation de burst suppression pendant cette période.

Exemple de bolus de **kétamine**


La kétamine est un antagoniste des récepteurs NMDA

Augmentation de l'activités cérébrales pendant une période approximative de 5 à 12 minutes selon le bolus.

Ne pas intervenir sur le niveau d'anesthésie suite au bolus, si la densité spectrale et la valeur BIS sont les paramètres décisionnels.

EXEMPLES CLINIQUES: BIS, EEG, DSA

BURST SUPPRESSION

Exemple de **Burst suppression**

Définition d'un BURST SUPPRESSION: Les épisodes de suppression sont identifiables par leur faible amplitude ($< 5\mu V$) et leur période typiquement longue (> 10s)

1- Cliquez sur le chiffre BIS

Affichage de la densité spectrale

2- Sélectionnez l'affichage: DSA+BIS

(DSA)

3- Cliquez à nouveau sur le chiffre BIS

